Title: Modeling Visual Signal Sensitivity for Human Perception, Machine Understanding, and Both

Abstract: Visual signal sensitivity, termed as Just-Noticeable-Difference (JND), refers to the minimum change of an image to be distinguished by the user. This talk firstly discusses how to model various visual signals (images, videos, graphics, and so on) for human users. Since humans have developed unique characteristics in perception over the long evolution, effective JND modeling facilitates optimization of user-centric system performance and utility of available resources (bandwidth, memory, battery, computation, device cost/size, etc). Machines are becoming the ultimate users for a rapidly increasing amount of visual signals in this AI era, and therefore as the second part of the talk, we will investigate into the concept of JND to be extended with machine tasks, including scenarios where both humans and machines are ultimate users. Finally, possible further research directions will be highlighted, inclusive of exploration toward true multimedia that consists of hearing, smell, touch and even taste aspects as well.

Biography

Prof. Weisi Lin
FIEEE, FIET, CEng, Hon. FSIET
Associate Chair (Research)
School of Computer Science and Engineering
Nanyang Technological University, Singapore

Lin Weisi is an active researcher in intelligent image processing, perception-based signal modelling and assessment, video compression, and multimedia communication. He had been the Lab Head, Visual Processing, in Institute for Infocomm Research (I2R),Singapore. He is a Professor in School of Computer Science and Engineering, Nanyang Technological University, where he also served as the Associate Chair (Research).

He is a Fellow of IEEE and IET, and has been awarded Highly Cited Researcher 2019, 2020, 2021 and 2022 by Clarivate Analytics. He has elected as a Distinguished Lecturer in both IEEE Circuits and Systems Society (2016-17) and Asia-Pacific Signal and Information Processing Association (2012-13), and given keynote/invited/tutorial/panel talks in 50+ international conferences. He has been an Associate Editor for IEEE Trans. Neural Networks Learn. Syst., IEEE Trans. Image Process., IEEE Trans. Circuits Syst. Video Technol., IEEE Trans. Multim., IEEE Sig. Process. Lett., Quality and User Experience, and J. Visual Commun. Image Represent. He also chaired the IEEE MMTC QoE Interest Group (2012-2014); he has been a TP Chair for IEEE ICME 2013, QoMEX 2014, PV 2015, PCM 2012 and IEEE VCIP 2017, and is a General Co-Chair for IEEE ICME 2025. He believes that good theory is practical, and has delivered 10+ major systems and modules for industrial deployment with the related technology developed.


Title:  to be added

Abstract: to be added

Biography

Prof. De-Shuang Huang
IEEE Fellow / IAPR Fellow / AAIA Fellow
Director, Big Data and Intelligent Computing Research Center, Guangxi Academy of Science, China
Director of Institute of Machine Learning and Systems Biology, Tongji University, China
 

De-Shuang Huang is a Professor in Institute of Machine Learning and Systems Biology, EIT Institute for Advanced Study, China. He is currently the Fellow of the IEEE (IEEE Fellow), the Fellow of the International Association of Pattern Recognition (IAPR Fellow), the Fellow of the Asia-Pacific Artificial Intelligence Association (AAIA), and associated editors of IEEE/ACM Transactions on Computational Biology & Bioinformatics and IEEE Transactions on Cognitive and Developmental Systems, etc. He founded the International Conference on Intelligent Computing (ICIC) in 2005. ICIC has since been successfully held annually with him serving as General or Steering Committee Chair. He also served as the 2015 International Joint Conference on Neural Networks (IJCNN2015) General Chair, July12-17, 2015, Killarney, Ireland, the 2014 11th IEEE Computational Intelligence in Bioinformatics and Computational Biology Conference (IEEE-CIBCBC) Program Committee Chair, May 21-24, 2014, Honolulu, USA. He has published over 470 papers in international journals, international conferences proceedings, and book chapters. Particularly, he has published over 240 SCI indexed papers. His Google Scholar citation number is over 20300 times and H index 76. His main research interest includes neural networks, pattern recognition and bioinformatics. His main research interest includes neural networks, pattern recognition and bioinformatics.