Title: Modeling Visual Signal Sensitivity for Human Perception, Machine Understanding, and Both Abstract: Visual signal sensitivity, termed as Just-Noticeable-Difference (JND), refers to the minimum change of an image to be distinguished by the user. This talk firstly discusses how to model various visual signals (images, videos, graphics, and so on) for human users. Since humans have developed unique characteristics in perception over the long evolution, effective JND modeling facilitates optimization of user-centric system performance and utility of available resources (bandwidth, memory, battery, computation, device cost/size, etc). Machines are becoming the ultimate users for a rapidly increasing amount of visual signals in this AI era, and therefore as the second part of the talk, we will investigate into the concept of JND to be extended with machine tasks, including scenarios where both humans and machines are ultimate users. Finally, possible further research directions will be highlighted, inclusive of exploration toward true multimedia that consists of hearing, smell, touch and even taste aspects as well. Biography ![]() Prof. Weisi Lin
|
Lin Weisi
is an active researcher in intelligent image processing,
perception-based signal modelling and assessment, video compression, and
multimedia communication. He had been the Lab Head, Visual Processing,
in Institute for Infocomm Research (I2R),Singapore. He is a Professor in
School of Computer Science and Engineering, Nanyang Technological
University, where he also served as the Associate Chair (Research). He is a Fellow of IEEE and IET, and has been awarded Highly Cited Researcher 2019, 2020, 2021 and 2022 by Clarivate Analytics. He has elected as a Distinguished Lecturer in both IEEE Circuits and Systems Society (2016-17) and Asia-Pacific Signal and Information Processing Association (2012-13), and given keynote/invited/tutorial/panel talks in 50+ international conferences. He has been an Associate Editor for IEEE Trans. Neural Networks Learn. Syst., IEEE Trans. Image Process., IEEE Trans. Circuits Syst. Video Technol., IEEE Trans. Multim., IEEE Sig. Process. Lett., Quality and User Experience, and J. Visual Commun. Image Represent. He also chaired the IEEE MMTC QoE Interest Group (2012-2014); he has been a TP Chair for IEEE ICME 2013, QoMEX 2014, PV 2015, PCM 2012 and IEEE VCIP 2017, and is a General Co-Chair for IEEE ICME 2025. He believes that good theory is practical, and has delivered 10+ major systems and modules for industrial deployment with the related technology developed. |
Title: to be added Abstract: to be added Biography ![]() Prof. De-Shuang Huang
|
De-Shuang Huang
is a Professor in Institute of Machine Learning
and Systems Biology, EIT Institute for Advanced Study, China. He is
currently the Fellow of the IEEE (IEEE Fellow), the Fellow of the
International Association of Pattern Recognition (IAPR Fellow), the
Fellow of the Asia-Pacific Artificial Intelligence Association (AAIA),
and associated editors of IEEE/ACM Transactions on Computational Biology
& Bioinformatics and IEEE Transactions on Cognitive and Developmental
Systems, etc. He founded the International Conference on Intelligent
Computing (ICIC) in 2005. ICIC has since been successfully held annually
with him serving as General or Steering Committee Chair. He also served
as the 2015 International Joint Conference on Neural Networks
(IJCNN2015) General Chair, July12-17, 2015, Killarney, Ireland, the 2014
11th IEEE Computational Intelligence in Bioinformatics and Computational
Biology Conference (IEEE-CIBCBC) Program Committee Chair, May 21-24,
2014, Honolulu, USA. He has published over 470 papers in international
journals, international conferences proceedings, and book chapters.
Particularly, he has published over 240 SCI indexed papers. His Google
Scholar citation number is over 20300 times and H index 76. His main
research interest includes neural networks, pattern recognition and
bioinformatics. His main research interest includes neural networks,
pattern recognition and bioinformatics. |